/** * Given an invalid input string and a list of valid options, returns a filtered * list of valid options sorted based on their similarity with the input. */ export default function suggestionList(input, options) { var optionsByDistance = Object.create(null); var inputThreshold = input.length / 2; for (var _i2 = 0; _i2 < options.length; _i2++) { var option = options[_i2]; var distance = lexicalDistance(input, option); var threshold = Math.max(inputThreshold, option.length / 2, 1); if (distance <= threshold) { optionsByDistance[option] = distance; } } return Object.keys(optionsByDistance).sort(function (a, b) { var distanceDiff = optionsByDistance[a] - optionsByDistance[b]; return distanceDiff !== 0 ? distanceDiff : a.localeCompare(b); }); } /** * Computes the lexical distance between strings A and B. * * The "distance" between two strings is given by counting the minimum number * of edits needed to transform string A into string B. An edit can be an * insertion, deletion, or substitution of a single character, or a swap of two * adjacent characters. * * Includes a custom alteration from Damerau-Levenshtein to treat case changes * as a single edit which helps identify mis-cased values with an edit distance * of 1. * * This distance can be useful for detecting typos in input or sorting * * @param {string} a * @param {string} b * @return {int} distance in number of edits */ function lexicalDistance(aStr, bStr) { if (aStr === bStr) { return 0; } var d = []; var a = aStr.toLowerCase(); var b = bStr.toLowerCase(); var aLength = a.length; var bLength = b.length; // Any case change counts as a single edit if (a === b) { return 1; } for (var i = 0; i <= aLength; i++) { d[i] = [i]; } for (var j = 1; j <= bLength; j++) { d[0][j] = j; } for (var _i3 = 1; _i3 <= aLength; _i3++) { for (var _j = 1; _j <= bLength; _j++) { var cost = a[_i3 - 1] === b[_j - 1] ? 0 : 1; d[_i3][_j] = Math.min(d[_i3 - 1][_j] + 1, d[_i3][_j - 1] + 1, d[_i3 - 1][_j - 1] + cost); if (_i3 > 1 && _j > 1 && a[_i3 - 1] === b[_j - 2] && a[_i3 - 2] === b[_j - 1]) { d[_i3][_j] = Math.min(d[_i3][_j], d[_i3 - 2][_j - 2] + cost); } } } return d[aLength][bLength]; }