// @flow strict /** * Given an invalid input string and a list of valid options, returns a filtered * list of valid options sorted based on their similarity with the input. */ export default function suggestionList( input: string, options: $ReadOnlyArray, ): Array { const optionsByDistance = Object.create(null); const inputThreshold = input.length / 2; for (const option of options) { const distance = lexicalDistance(input, option); const threshold = Math.max(inputThreshold, option.length / 2, 1); if (distance <= threshold) { optionsByDistance[option] = distance; } } return Object.keys(optionsByDistance).sort((a, b) => { const distanceDiff = optionsByDistance[a] - optionsByDistance[b]; return distanceDiff !== 0 ? distanceDiff : a.localeCompare(b); }); } /** * Computes the lexical distance between strings A and B. * * The "distance" between two strings is given by counting the minimum number * of edits needed to transform string A into string B. An edit can be an * insertion, deletion, or substitution of a single character, or a swap of two * adjacent characters. * * Includes a custom alteration from Damerau-Levenshtein to treat case changes * as a single edit which helps identify mis-cased values with an edit distance * of 1. * * This distance can be useful for detecting typos in input or sorting * * @param {string} a * @param {string} b * @return {int} distance in number of edits */ function lexicalDistance(aStr, bStr) { if (aStr === bStr) { return 0; } const d = []; const a = aStr.toLowerCase(); const b = bStr.toLowerCase(); const aLength = a.length; const bLength = b.length; // Any case change counts as a single edit if (a === b) { return 1; } for (let i = 0; i <= aLength; i++) { d[i] = [i]; } for (let j = 1; j <= bLength; j++) { d[0][j] = j; } for (let i = 1; i <= aLength; i++) { for (let j = 1; j <= bLength; j++) { const cost = a[i - 1] === b[j - 1] ? 0 : 1; d[i][j] = Math.min( d[i - 1][j] + 1, d[i][j - 1] + 1, d[i - 1][j - 1] + cost, ); if (i > 1 && j > 1 && a[i - 1] === b[j - 2] && a[i - 2] === b[j - 1]) { d[i][j] = Math.min(d[i][j], d[i - 2][j - 2] + cost); } } } return d[aLength][bLength]; }