Difficult-Rocket/libs/pyglet/math.py
shenjack d84b490b99
with more logger
Add | more formatter and some more

Fix | type mis match

sync pyglet

Enhance | logger with Template

add lib-not-dr as requirement

sync pyglet

sync pyglet

Add | add lto=yes to nuitka_build

just incase

sync pyglet

sync lib_not_dr

Remove | external requirement lib-not-dr

some logger

sync lib-not-dr

sync pyglet

sync lib-not-dr

sync lib-not-dr

sync pyglet

sync pyglet

Fix | console thread been block

Update DR rs and DR sdk

sync lib not dr

sync lib-not-dr

sync lib-not-dr

sync pyglet and lib-not-dr

sync pyglet 0.1.8

sync lib not dr

logger almost done?

almost!

sync pyglet (clicpboard support!)

sync lib not dr

sync lib not dr

color code and sync pyglet

do not show memory and progress building localy

sync pyglet

synclibs
2023-11-20 20:12:59 +08:00

1118 lines
37 KiB
Python

"""Matrix and Vector math.
This module provides Vector and Matrix objects, including Vec2, Vec3,
Vec4, Mat3, and Mat4. Most common matrix and vector operations are
supported. Helper methods are included for rotating, scaling, and
transforming. The :py:class:`~pyglet.matrix.Mat4` includes class methods
for creating orthographic and perspective projection matrixes.
Matrices behave just like they do in GLSL: they are specified in column-major
order and multiply on the left of vectors, which are treated as columns.
.. note:: For performance reasons, Matrix types subclass `tuple`. They are
therefore immutable. All operations return a new object; the object
is not updated in-place.
"""
from __future__ import annotations
import math as _math
import typing as _typing
import warnings as _warnings
from operator import mul as _mul
from collections.abc import Iterable as _Iterable
from collections.abc import Iterator as _Iterator
number = _typing.Union[float, int]
Mat3T = _typing.TypeVar("Mat3T", bound="Mat3")
Mat4T = _typing.TypeVar("Mat4T", bound="Mat4")
def clamp(num: float, min_val: float, max_val: float) -> float:
return max(min(num, max_val), min_val)
class Vec2:
__slots__ = 'x', 'y'
"""A two-dimensional vector represented as an X Y coordinate pair."""
def __init__(self, x: number = 0.0, y: number = 0.0) -> None:
self.x = x
self.y = y
def __iter__(self) -> _Iterator[float]:
yield self.x
yield self.y
@_typing.overload
def __getitem__(self, item: int) -> float:
...
@_typing.overload
def __getitem__(self, item: slice) -> tuple[float, ...]:
...
def __getitem__(self, item):
return (self.x, self.y)[item]
def __setitem__(self, key, value):
if type(key) is slice:
for i, attr in enumerate(['x', 'y'][key]):
setattr(self, attr, value[i])
else:
setattr(self, ['x', 'y'][key], value)
def __len__(self) -> int:
return 2
def __add__(self, other: Vec2) -> Vec2:
return Vec2(self.x + other.x, self.y + other.y)
def __sub__(self, other: Vec2) -> Vec2:
return Vec2(self.x - other.x, self.y - other.y)
def __mul__(self, scalar: number) -> Vec2:
return Vec2(self.x * scalar, self.y * scalar)
def __truediv__(self, scalar: number) -> Vec2:
return Vec2(self.x / scalar, self.y / scalar)
def __floordiv__(self, scalar: number) -> Vec2:
return Vec2(self.x // scalar, self.y // scalar)
def __abs__(self) -> float:
return _math.sqrt(self.x ** 2 + self.y ** 2)
def __neg__(self) -> Vec2:
return Vec2(-self.x, -self.y)
def __round__(self, ndigits: int | None = None) -> Vec2:
return Vec2(*(round(v, ndigits) for v in self))
def __radd__(self, other: Vec2 | int) -> Vec2:
"""Reverse add. Required for functionality with sum()
"""
if other == 0:
return self
else:
return self.__add__(_typing.cast(Vec2, other))
def __eq__(self, other: object) -> bool:
return isinstance(other, Vec2) and self.x == other.x and self.y == other.y
def __ne__(self, other: object) -> bool:
return not isinstance(other, Vec2) or self.x != other.x or self.y != other.y
@staticmethod
def from_polar(mag: float, angle: float) -> Vec2:
"""Create a new vector from the given polar coordinates.
:parameters:
`mag` : int or float :
The magnitude of the vector.
`angle` : int or float :
The angle of the vector in radians.
:returns: A new vector with the given angle and magnitude.
:rtype: Vec2
"""
return Vec2(mag * _math.cos(angle), mag * _math.sin(angle))
def from_magnitude(self, magnitude: float) -> Vec2:
"""Create a new Vector of the given magnitude by normalizing,
then scaling the vector. The heading remains unchanged.
:parameters:
`magnitude` : int or float :
The magnitude of the new vector.
:returns: A new vector with the magnitude.
:rtype: Vec2
"""
return self.normalize() * magnitude
def from_heading(self, heading: float) -> Vec2:
"""Create a new vector of the same magnitude with the given heading. I.e. Rotate the vector to the heading.
:parameters:
`heading` : int or float :
The angle of the new vector in radians.
:returns: A new vector with the given heading.
:rtype: Vec2
"""
mag = self.__abs__()
return Vec2(mag * _math.cos(heading), mag * _math.sin(heading))
@property
def heading(self) -> float:
"""The angle of the vector in radians.
:type: float
"""
return _math.atan2(self.y, self.x)
@property
def mag(self) -> float:
"""The magnitude, or length of the vector. The distance between the coordinates and the origin.
Alias of abs(self).
:type: float
"""
return self.__abs__()
def limit(self, maximum: float) -> Vec2:
"""Limit the magnitude of the vector to the value used for the max parameter.
:parameters:
`maximum` : int or float :
The maximum magnitude for the vector.
:returns: Either self or a new vector with the maximum magnitude.
:rtype: Vec2
"""
if self.x ** 2 + self.y ** 2 > maximum * maximum:
return self.from_magnitude(maximum)
return self
def lerp(self, other: Vec2, alpha: float) -> Vec2:
"""Create a new Vec2 linearly interpolated between this vector and another Vec2.
:parameters:
`other` : Vec2 :
The vector to linearly interpolate with.
`alpha` : float or int :
The amount of interpolation.
Some value between 0.0 (this vector) and 1.0 (other vector).
0.5 is halfway inbetween.
:returns: A new interpolated vector.
:rtype: Vec2
"""
return Vec2(self.x + (alpha * (other.x - self.x)),
self.y + (alpha * (other.y - self.y)))
def reflect(self, normal: Vec2) -> Vec2:
"""Create a new Vec2 reflected (ricochet) from the given normal."""
return self - normal * 2 * normal.dot(self)
def rotate(self, angle: float) -> Vec2:
"""Create a new Vector rotated by the angle. The magnitude remains unchanged.
:parameters:
`angle` : int or float :
The angle to rotate by
:returns: A new rotated vector of the same magnitude.
:rtype: Vec2
"""
s = _math.sin(angle)
c = _math.cos(angle)
return Vec2(c * self.x - s * self.y, s * self.x + c * self.y)
def distance(self, other: Vec2) -> float:
"""Calculate the distance between this vector and another 2D vector."""
return _math.sqrt(((other.x - self.x) ** 2) + ((other.y - self.y) ** 2))
def normalize(self) -> Vec2:
"""Normalize the vector to have a magnitude of 1. i.e. make it a unit vector.
:returns: A unit vector with the same heading.
:rtype: Vec2
"""
d = self.__abs__()
if d:
return Vec2(self.x / d, self.y / d)
return self
def clamp(self, min_val: float, max_val: float) -> Vec2:
"""Restrict the value of the X and Y components of the vector to be within the given values.
:parameters:
`min_val` : int or float :
The minimum value
`max_val` : int or float :
The maximum value
:returns: A new vector with clamped X and Y components.
:rtype: Vec2
"""
return Vec2(clamp(self.x, min_val, max_val), clamp(self.y, min_val, max_val))
def dot(self, other: Vec2) -> float:
"""Calculate the dot product of this vector and another 2D vector.
:parameters:
`other` : Vec2 :
The other vector.
:returns: The dot product of the two vectors.
:rtype: float
"""
return self.x * other.x + self.y * other.y
def __getattr__(self, attrs: str) -> Vec2 | Vec3 | Vec4:
try:
# Allow swizzled getting of attrs
vec_class = {2: Vec2, 3: Vec3, 4: Vec4}[len(attrs)]
return vec_class(*(self['xy'.index(c)] for c in attrs))
except Exception:
raise AttributeError(
f"'{self.__class__.__name__}' object has no attribute '{attrs}'"
) from None
def __repr__(self) -> str:
return f"Vec2({self.x}, {self.y})"
class Vec3:
__slots__ = 'x', 'y', 'z'
"""A three-dimensional vector represented as X Y Z coordinates."""
def __init__(self, x: number = 0.0, y: number = 0.0, z: number = 0.0) -> None:
self.x = x
self.y = y
self.z = z
def __iter__(self) -> _Iterator[float]:
yield self.x
yield self.y
yield self.z
@_typing.overload
def __getitem__(self, item: int) -> float:
...
@_typing.overload
def __getitem__(self, item: slice) -> tuple[float, ...]:
...
def __getitem__(self, item):
return (self.x, self.y, self.z)[item]
def __setitem__(self, key, value):
if type(key) is slice:
for i, attr in enumerate(['x', 'y', 'z'][key]):
setattr(self, attr, value[i])
else:
setattr(self, ['x', 'y', 'z'][key], value)
def __len__(self) -> int:
return 3
@property
def mag(self) -> float:
"""The magnitude, or length of the vector. The distance between the coordinates and the origin.
Alias of abs(self).
:type: float
"""
return self.__abs__()
def __add__(self, other: Vec3) -> Vec3:
return Vec3(self.x + other.x, self.y + other.y, self.z + other.z)
def __sub__(self, other: Vec3) -> Vec3:
return Vec3(self.x - other.x, self.y - other.y, self.z - other.z)
def __mul__(self, scalar: number) -> Vec3:
return Vec3(self.x * scalar, self.y * scalar, self.z * scalar)
def __truediv__(self, scalar: number) -> Vec3:
return Vec3(self.x / scalar, self.y / scalar, self.z / scalar)
def __floordiv__(self, scalar: number) -> Vec3:
return Vec3(self.x // scalar, self.y // scalar, self.z // scalar)
def __abs__(self) -> float:
return _math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)
def __neg__(self) -> Vec3:
return Vec3(-self.x, -self.y, -self.z)
def __round__(self, ndigits: int | None = None) -> Vec3:
return Vec3(*(round(v, ndigits) for v in self))
def __radd__(self, other: Vec3 | int) -> Vec3:
"""Reverse add. Required for functionality with sum()"""
if other == 0:
return self
else:
return self.__add__(_typing.cast(Vec3, other))
def __eq__(self, other: object) -> bool:
return isinstance(other, Vec3) and self.x == other.x and self.y == other.y and self.z == other.z
def __ne__(self, other: object) -> bool:
return not isinstance(other, Vec3) or self.x != other.x or self.y != other.y or self.z != other.z
def from_magnitude(self, magnitude: float) -> Vec3:
"""Create a new Vector of the given magnitude by normalizing,
then scaling the vector. The rotation remains unchanged.
:parameters:
`magnitude` : int or float :
The magnitude of the new vector.
:returns: A new vector with the magnitude.
:rtype: Vec3
"""
return self.normalize() * magnitude
def limit(self, maximum: float) -> Vec3:
"""Limit the magnitude of the vector to the value used for the max parameter.
:parameters:
`maximum` : int or float :
The maximum magnitude for the vector.
:returns: Either self or a new vector with the maximum magnitude.
:rtype: Vec3
"""
if self.x ** 2 + self.y ** 2 + self.z ** 2 > maximum * maximum * maximum:
return self.from_magnitude(maximum)
return self
def cross(self, other: Vec3) -> Vec3:
"""Calculate the cross product of this vector and another 3D vector.
:parameters:
`other` : Vec3 :
The other vector.
:returns: The cross product of the two vectors.
:rtype: float
"""
return Vec3((self.y * other.z) - (self.z * other.y),
(self.z * other.x) - (self.x * other.z),
(self.x * other.y) - (self.y * other.x))
def dot(self, other: Vec3) -> float:
"""Calculate the dot product of this vector and another 3D vector.
:parameters:
`other` : Vec3 :
The other vector.
:returns: The dot product of the two vectors.
:rtype: float
"""
return self.x * other.x + self.y * other.y + self.z * other.z
def lerp(self, other: Vec3, alpha: float) -> Vec3:
"""Create a new Vec3 linearly interpolated between this vector and another Vec3.
:parameters:
`other` : Vec3 :
The vector to linearly interpolate with.
`alpha` : float or int :
The amount of interpolation.
Some value between 0.0 (this vector) and 1.0 (other vector).
0.5 is halfway inbetween.
:returns: A new interpolated vector.
:rtype: Vec3
"""
return Vec3(self.x + (alpha * (other.x - self.x)),
self.y + (alpha * (other.y - self.y)),
self.z + (alpha * (other.z - self.z)))
def distance(self, other: Vec3) -> float:
"""Calculate the distance between this vector and another 3D vector.
:parameters:
`other` : Vec3 :
The other vector
:returns: The distance between the two vectors.
:rtype: float
"""
return _math.sqrt(((other.x - self.x) ** 2) +
((other.y - self.y) ** 2) +
((other.z - self.z) ** 2))
def normalize(self) -> Vec3:
"""Normalize the vector to have a magnitude of 1. i.e. make it a unit vector.
:returns: A unit vector with the same rotation.
:rtype: Vec3
"""
try:
d = self.__abs__()
return Vec3(self.x / d, self.y / d, self.z / d)
except ZeroDivisionError:
return self
def clamp(self, min_val: float, max_val: float) -> Vec3:
"""Restrict the value of the X, Y and Z components of the vector to be within the given values.
:parameters:
`min_val` : int or float :
The minimum value
`max_val` : int or float :
The maximum value
:returns: A new vector with clamped X, Y and Z components.
:rtype: Vec3
"""
return Vec3(clamp(self.x, min_val, max_val),
clamp(self.y, min_val, max_val),
clamp(self.z, min_val, max_val))
def __getattr__(self, attrs: str) -> Vec2 | Vec3 | Vec4:
try:
# Allow swizzled getting of attrs
vec_class = {2: Vec2, 3: Vec3, 4: Vec4}[len(attrs)]
return vec_class(*(self['xyz'.index(c)] for c in attrs))
except Exception:
raise AttributeError(
f"'{self.__class__.__name__}' object has no attribute '{attrs}'"
) from None
def __repr__(self) -> str:
return f"Vec3({self.x}, {self.y}, {self.z})"
class Vec4:
__slots__ = 'x', 'y', 'z', 'w'
"""A four-dimensional vector represented as X Y Z W coordinates."""
def __init__(self, x: number = 0.0, y: number = 0.0, z: number = 0.0, w: number = 0.0) -> None:
self.x = x
self.y = y
self.z = z
self.w = w
def __iter__(self) -> _Iterator[float]:
yield self.x
yield self.y
yield self.z
yield self.w
@_typing.overload
def __getitem__(self, item: int) -> float:
...
@_typing.overload
def __getitem__(self, item: slice) -> tuple[float, ...]:
...
def __getitem__(self, item):
return (self.x, self.y, self.z, self.w)[item]
def __setitem__(self, key, value):
if type(key) is slice:
for i, attr in enumerate(['x', 'y', 'z', 'w'][key]):
setattr(self, attr, value[i])
else:
setattr(self, ['x', 'y', 'z', 'w'][key], value)
def __len__(self) -> int:
return 4
def __add__(self, other: Vec4) -> Vec4:
return Vec4(self.x + other.x, self.y + other.y, self.z + other.z, self.w + other.w)
def __sub__(self, other: Vec4) -> Vec4:
return Vec4(self.x - other.x, self.y - other.y, self.z - other.z, self.w - other.w)
def __mul__(self, scalar: number) -> Vec4:
return Vec4(self.x * scalar, self.y * scalar, self.z * scalar, self.w * scalar)
def __truediv__(self, scalar: number) -> Vec4:
return Vec4(self.x / scalar, self.y / scalar, self.z / scalar, self.w / scalar)
def __floordiv__(self, scalar: number) -> Vec4:
return Vec4(self.x // scalar, self.y // scalar, self.z // scalar, self.w // scalar)
def __abs__(self) -> float:
return _math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2 + self.w ** 2)
def __neg__(self) -> Vec4:
return Vec4(-self.x, -self.y, -self.z, -self.w)
def __round__(self, ndigits: int | None = None) -> Vec4:
return Vec4(*(round(v, ndigits) for v in self))
def __radd__(self, other: Vec4 | int) -> Vec4:
if other == 0:
return self
else:
return self.__add__(_typing.cast(Vec4, other))
def __eq__(self, other: object) -> bool:
return (
isinstance(other, Vec4)
and self.x == other.x
and self.y == other.y
and self.z == other.z
and self.w == other.w
)
def __ne__(self, other: object) -> bool:
return (
not isinstance(other, Vec4)
or self.x != other.x
or self.y != other.y
or self.z != other.z
or self.w != other.w
)
def lerp(self, other: Vec4, alpha: float) -> Vec4:
"""Create a new Vec4 linearly interpolated between this one and another Vec4.
:parameters:
`other` : Vec4 :
The vector to linearly interpolate with.
`alpha` : float or int :
The amount of interpolation.
Some value between 0.0 (this vector) and 1.0 (other vector).
0.5 is halfway inbetween.
:returns: A new interpolated vector.
:rtype: Vec4
"""
return Vec4(self.x + (alpha * (other.x - self.x)),
self.y + (alpha * (other.y - self.y)),
self.z + (alpha * (other.z - self.z)),
self.w + (alpha * (other.w - self.w)))
def distance(self, other: Vec4) -> float:
return _math.sqrt(((other.x - self.x) ** 2) +
((other.y - self.y) ** 2) +
((other.z - self.z) ** 2) +
((other.w - self.w) ** 2))
def normalize(self) -> Vec4:
"""Normalize the vector to have a magnitude of 1. i.e. make it a unit vector."""
d = self.__abs__()
if d:
return Vec4(self.x / d, self.y / d, self.z / d, self.w / d)
return self
def clamp(self, min_val: float, max_val: float) -> Vec4:
return Vec4(clamp(self.x, min_val, max_val),
clamp(self.y, min_val, max_val),
clamp(self.z, min_val, max_val),
clamp(self.w, min_val, max_val))
def dot(self, other: Vec4) -> float:
return self.x * other.x + self.y * other.y + self.z * other.z + self.w * other.w
def __getattr__(self, attrs: str) -> Vec2 | Vec3 | Vec4:
try:
# Allow swizzled getting of attrs
vec_class = {2: Vec2, 3: Vec3, 4: Vec4}[len(attrs)]
return vec_class(*(self['xyzw'.index(c)] for c in attrs))
except Exception:
raise AttributeError(
f"'{self.__class__.__name__}' object has no attribute '{attrs}'"
) from None
def __repr__(self) -> str:
return f"Vec4({self.x}, {self.y}, {self.z}, {self.w})"
class Mat3(tuple):
"""A 3x3 Matrix class
`Mat3` is an immutable 3x3 Matrix, including most common
operators. Matrix multiplication must be performed using
the "@" operator.
"""
def __new__(cls: type[Mat3T], values: _Iterable[float] = (1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)) -> Mat3T:
"""Create a 3x3 Matrix
A Mat3 can be created with a list or tuple of 9 values.
If no values are provided, an "identity matrix" will be created
(1.0 on the main diagonal). Matrix objects are immutable, so
all operations return a new Mat3 object.
:Parameters:
`values` : tuple of float or int
A tuple or list containing 9 floats or ints.
"""
new = super().__new__(cls, values)
assert len(new) == 9, "A 3x3 Matrix requires 9 values"
return new
def scale(self, sx: float, sy: float) -> Mat3:
return self @ Mat3((1.0 / sx, 0.0, 0.0, 0.0, 1.0 / sy, 0.0, 0.0, 0.0, 1.0))
def translate(self, tx: float, ty: float) -> Mat3:
return self @ Mat3((1.0, 0.0, 0.0, 0.0, 1.0, 0.0, -tx, ty, 1.0))
def rotate(self, phi: float) -> Mat3:
s = _math.sin(_math.radians(phi))
c = _math.cos(_math.radians(phi))
return self @ Mat3((c, s, 0.0, -s, c, 0.0, 0.0, 0.0, 1.0))
def shear(self, sx: float, sy: float) -> Mat3:
return self @ Mat3((1.0, sy, 0.0, sx, 1.0, 0.0, 0.0, 0.0, 1.0))
def __add__(self, other: Mat3) -> Mat3:
if not isinstance(other, Mat3):
raise TypeError("Can only add to other Mat3 types")
return Mat3(s + o for s, o in zip(self, other))
def __sub__(self, other: Mat3) -> Mat3:
if not isinstance(other, Mat3):
raise TypeError("Can only subtract from other Mat3 types")
return Mat3(s - o for s, o in zip(self, other))
def __pos__(self) -> Mat3:
return self
def __neg__(self) -> Mat3:
return Mat3(-v for v in self)
def __round__(self, ndigits: int | None = None) -> Mat3:
return Mat3(round(v, ndigits) for v in self)
def __mul__(self, other: object) -> _typing.NoReturn:
raise NotImplementedError("Please use the @ operator for Matrix multiplication.")
@_typing.overload
def __matmul__(self, other: Vec3) -> Vec3:
...
@_typing.overload
def __matmul__(self, other: Mat3) -> Mat3:
...
def __matmul__(self, other):
if isinstance(other, Vec3):
# Rows:
r0 = self[0::3]
r1 = self[1::3]
r2 = self[2::3]
return Vec3(sum(map(_mul, r0, other)),
sum(map(_mul, r1, other)),
sum(map(_mul, r2, other)))
if not isinstance(other, Mat3):
raise TypeError("Can only multiply with Mat3 or Vec3 types")
# Rows:
r0 = self[0::3]
r1 = self[1::3]
r2 = self[2::3]
# Columns:
c0 = other[0:3]
c1 = other[3:6]
c2 = other[6:9]
# Multiply and sum rows * columns:
return Mat3((sum(map(_mul, c0, r0)), sum(map(_mul, c0, r1)), sum(map(_mul, c0, r2)),
sum(map(_mul, c1, r0)), sum(map(_mul, c1, r1)), sum(map(_mul, c1, r2)),
sum(map(_mul, c2, r0)), sum(map(_mul, c2, r1)), sum(map(_mul, c2, r2))))
def __repr__(self) -> str:
return f"{self.__class__.__name__}{self[0:3]}\n {self[3:6]}\n {self[6:9]}"
class Mat4(tuple):
def __new__(cls: type[Mat4T], values: _Iterable[float] = (1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0,)) -> Mat4T:
"""Create a 4x4 Matrix.
`Mat4` is an immutable 4x4 Matrix, which includs most common
operators. This includes class methods for creating orthogonal
and perspective projection matrixes, to be used by OpenGL.
A Matrix can be created with a list or tuple of 16 values.
If no values are provided, an "identity matrix" will be created
(1.0 on the main diagonal). Matrix objects are immutable, so
all operations return a new Mat4 object.
.. note:: Matrix multiplication is performed using the "@" operator.
"""
new = super().__new__(cls, values)
assert len(new) == 16, "A 4x4 Matrix requires 16 values"
return new
@classmethod
def orthogonal_projection(cls: type[Mat4T], left: float, right: float, bottom: float, top: float, z_near: float, z_far: float) -> Mat4T:
"""Create a Mat4 orthographic projection matrix for use with OpenGL.
Given left, right, bottom, top values, and near/far z planes,
create a 4x4 Projection Matrix. This is useful for setting
:py:attr:`~pyglet.window.Window.projection`.
"""
width = right - left
height = top - bottom
depth = z_far - z_near
sx = 2.0 / width
sy = 2.0 / height
sz = 2.0 / -depth
tx = -(right + left) / width
ty = -(top + bottom) / height
tz = -(z_far + z_near) / depth
return cls((sx, 0.0, 0.0, 0.0,
0.0, sy, 0.0, 0.0,
0.0, 0.0, sz, 0.0,
tx, ty, tz, 1.0))
@classmethod
def perspective_projection(cls: type[Mat4T], aspect: float, z_near: float, z_far: float, fov: float = 60) -> Mat4T:
"""Create a Mat4 perspective projection matrix for use with OpenGL.
Given a desired aspect ratio, near/far planes, and fov (field of view),
create a 4x4 Projection Matrix. This is useful for setting
:py:attr:`~pyglet.window.Window.projection`.
"""
xy_max = z_near * _math.tan(fov * _math.pi / 360)
y_min = -xy_max
x_min = -xy_max
width = xy_max - x_min
height = xy_max - y_min
depth = z_far - z_near
q = -(z_far + z_near) / depth
qn = -2 * z_far * z_near / depth
w = 2 * z_near / width
w = w / aspect
h = 2 * z_near / height
return cls((w, 0, 0, 0,
0, h, 0, 0,
0, 0, q, -1,
0, 0, qn, 0))
@classmethod
def from_rotation(cls, angle: float, vector: Vec3) -> Mat4:
"""Create a rotation matrix from an angle and Vec3.
:Parameters:
`angle` : A `float` :
The angle as a float.
`vector` : A `Vec3`, or 3 component tuple of float or int :
Vec3 or tuple with x, y and z translation values
"""
return cls().rotate(angle, vector)
@classmethod
def from_scale(cls: type[Mat4T], vector: Vec3) -> Mat4T:
"""Create a scale matrix from a Vec3.
:Parameters:
`vector` : A `Vec3`, or 3 component tuple of float or int
Vec3 or tuple with x, y and z scale values
"""
return cls((vector[0], 0.0, 0.0, 0.0,
0.0, vector[1], 0.0, 0.0,
0.0, 0.0, vector[2], 0.0,
0.0, 0.0, 0.0, 1.0))
@classmethod
def from_translation(cls: type[Mat4T], vector: Vec3) -> Mat4T:
"""Create a translation matrix from a Vec3.
:Parameters:
`vector` : A `Vec3`, or 3 component tuple of float or int
Vec3 or tuple with x, y and z translation values
"""
return cls((1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
vector[0], vector[1], vector[2], 1.0))
@classmethod
def look_at(cls: type[Mat4T], position: Vec3, target: Vec3, up: Vec3):
f = (target - position).normalize()
u = up.normalize()
s = f.cross(u).normalize()
u = s.cross(f)
return cls([s.x, u.x, -f.x, 0.0,
s.y, u.y, -f.y, 0.0,
s.z, u.z, -f.z, 0.0,
-s.dot(position), -u.dot(position), f.dot(position), 1.0])
def row(self, index: int) -> tuple:
"""Get a specific row as a tuple."""
return self[index::4]
def column(self, index: int) -> tuple:
"""Get a specific column as a tuple."""
return self[index * 4: index * 4 + 4]
def rotate(self, angle: float, vector: Vec3) -> Mat4:
"""Get a rotation Matrix on x, y, or z axis."""
if not all(abs(n) <= 1 for n in vector):
raise ValueError("vector must be normalized (<=1)")
x, y, z = vector
c = _math.cos(angle)
s = _math.sin(angle)
t = 1 - c
temp_x, temp_y, temp_z = t * x, t * y, t * z
ra = c + temp_x * x
rb = 0 + temp_x * y + s * z
rc = 0 + temp_x * z - s * y
re = 0 + temp_y * x - s * z
rf = c + temp_y * y
rg = 0 + temp_y * z + s * x
ri = 0 + temp_z * x + s * y
rj = 0 + temp_z * y - s * x
rk = c + temp_z * z
# ra, rb, rc, --
# re, rf, rg, --
# ri, rj, rk, --
# --, --, --, --
return Mat4(self) @ Mat4((ra, rb, rc, 0, re, rf, rg, 0, ri, rj, rk, 0, 0, 0, 0, 1))
def scale(self, vector: Vec3) -> Mat4:
"""Get a scale Matrix on x, y, or z axis."""
temp = list(self)
temp[0] *= vector[0]
temp[5] *= vector[1]
temp[10] *= vector[2]
return Mat4(temp)
def translate(self, vector: Vec3) -> Mat4:
"""Get a translation Matrix along x, y, and z axis."""
return self @ Mat4((1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, *vector, 1))
def transpose(self) -> Mat4:
"""Get a transpose of this Matrix."""
return Mat4(self[0::4] + self[1::4] + self[2::4] + self[3::4])
def __add__(self, other: Mat4) -> Mat4:
if not isinstance(other, Mat4):
raise TypeError("Can only add to other Mat4 types")
return Mat4(s + o for s, o in zip(self, other))
def __sub__(self, other: Mat4) -> Mat4:
if not isinstance(other, Mat4):
raise TypeError("Can only subtract from other Mat4 types")
return Mat4(s - o for s, o in zip(self, other))
def __pos__(self) -> Mat4:
return self
def __neg__(self) -> Mat4:
return Mat4(-v for v in self)
def __invert__(self) -> Mat4:
a = self[10] * self[15] - self[11] * self[14]
b = self[9] * self[15] - self[11] * self[13]
c = self[9] * self[14] - self[10] * self[13]
d = self[8] * self[15] - self[11] * self[12]
e = self[8] * self[14] - self[10] * self[12]
f = self[8] * self[13] - self[9] * self[12]
g = self[6] * self[15] - self[7] * self[14]
h = self[5] * self[15] - self[7] * self[13]
i = self[5] * self[14] - self[6] * self[13]
j = self[6] * self[11] - self[7] * self[10]
k = self[5] * self[11] - self[7] * self[9]
l = self[5] * self[10] - self[6] * self[9]
m = self[4] * self[15] - self[7] * self[12]
n = self[4] * self[14] - self[6] * self[12]
o = self[4] * self[11] - self[7] * self[8]
p = self[4] * self[10] - self[6] * self[8]
q = self[4] * self[13] - self[5] * self[12]
r = self[4] * self[9] - self[5] * self[8]
det = (self[0] * (self[5] * a - self[6] * b + self[7] * c)
- self[1] * (self[4] * a - self[6] * d + self[7] * e)
+ self[2] * (self[4] * b - self[5] * d + self[7] * f)
- self[3] * (self[4] * c - self[5] * e + self[6] * f))
if det == 0:
_warnings.warn("Unable to calculate inverse of singular Matrix")
return self
pdet = 1 / det
ndet = -pdet
return Mat4((pdet * (self[5] * a - self[6] * b + self[7] * c),
ndet * (self[1] * a - self[2] * b + self[3] * c),
pdet * (self[1] * g - self[2] * h + self[3] * i),
ndet * (self[1] * j - self[2] * k + self[3] * l),
ndet * (self[4] * a - self[6] * d + self[7] * e),
pdet * (self[0] * a - self[2] * d + self[3] * e),
ndet * (self[0] * g - self[2] * m + self[3] * n),
pdet * (self[0] * j - self[2] * o + self[3] * p),
pdet * (self[4] * b - self[5] * d + self[7] * f),
ndet * (self[0] * b - self[1] * d + self[3] * f),
pdet * (self[0] * h - self[1] * m + self[3] * q),
ndet * (self[0] * k - self[1] * o + self[3] * r),
ndet * (self[4] * c - self[5] * e + self[6] * f),
pdet * (self[0] * c - self[1] * e + self[2] * f),
ndet * (self[0] * i - self[1] * n + self[2] * q),
pdet * (self[0] * l - self[1] * p + self[2] * r)))
def __round__(self, ndigits: int | None = None) -> Mat4:
return Mat4(round(v, ndigits) for v in self)
def __mul__(self, other: int) -> _typing.NoReturn:
raise NotImplementedError("Please use the @ operator for Matrix multiplication.")
@_typing.overload
def __matmul__(self, other: Vec4) -> Vec4:
...
@_typing.overload
def __matmul__(self, other: Mat4) -> Mat4:
...
def __matmul__(self, other):
if isinstance(other, Vec4):
# Rows:
r0 = self[0::4]
r1 = self[1::4]
r2 = self[2::4]
r3 = self[3::4]
return Vec4(sum(map(_mul, r0, other)),
sum(map(_mul, r1, other)),
sum(map(_mul, r2, other)),
sum(map(_mul, r3, other)))
if not isinstance(other, Mat4):
raise TypeError("Can only multiply with Mat4 or Vec4 types")
# Rows:
r0 = self[0::4]
r1 = self[1::4]
r2 = self[2::4]
r3 = self[3::4]
# Columns:
c0 = other[0:4]
c1 = other[4:8]
c2 = other[8:12]
c3 = other[12:16]
# Multiply and sum rows * columns:
return Mat4((sum(map(_mul, c0, r0)), sum(map(_mul, c0, r1)), sum(map(_mul, c0, r2)), sum(map(_mul, c0, r3)),
sum(map(_mul, c1, r0)), sum(map(_mul, c1, r1)), sum(map(_mul, c1, r2)), sum(map(_mul, c1, r3)),
sum(map(_mul, c2, r0)), sum(map(_mul, c2, r1)), sum(map(_mul, c2, r2)), sum(map(_mul, c2, r3)),
sum(map(_mul, c3, r0)), sum(map(_mul, c3, r1)), sum(map(_mul, c3, r2)), sum(map(_mul, c3, r3))))
# def __getitem__(self, item):
# row = [slice(0, 4), slice(4, 8), slice(8, 12), slice(12, 16)][item]
# return super().__getitem__(row)
def __repr__(self) -> str:
return f"{self.__class__.__name__}{self[0:4]}\n {self[4:8]}\n {self[8:12]}\n {self[12:16]}"
class Quaternion(tuple):
"""Quaternion"""
def __new__(cls, w: float = 1.0, x: float = 0.0, y: float = 0.0, z: float = 0.0) -> Quaternion:
return super().__new__(Quaternion, (w, x, y, z))
@classmethod
def from_mat3(cls) -> Quaternion:
raise NotImplementedError("Not yet implemented")
@classmethod
def from_mat4(cls) -> Quaternion:
raise NotImplementedError("Not yet implemented")
def to_mat4(self) -> Mat4:
w = self.w
x = self.x
y = self.y
z = self.z
a = 1 - (y ** 2 + z ** 2) * 2
b = 2 * (x * y - z * w)
c = 2 * (x * z + y * w)
e = 2 * (x * y + z * w)
f = 1 - (x ** 2 + z ** 2) * 2
g = 2 * (y * z - x * w)
i = 2 * (x * z - y * w)
j = 2 * (y * z + x * w)
k = 1 - (x ** 2 + y ** 2) * 2
# a, b, c, -
# e, f, g, -
# i, j, k, -
# -, -, -, -
return Mat4((a, b, c, 0.0, e, f, g, 0.0, i, j, k, 0.0, 0.0, 0.0, 0.0, 1.0))
def to_mat3(self) -> Mat3:
w = self.w
x = self.x
y = self.y
z = self.z
a = 1 - (y ** 2 + z ** 2) * 2
b = 2 * (x * y - z * w)
c = 2 * (x * z + y * w)
e = 2 * (x * y + z * w)
f = 1 - (x ** 2 + z ** 2) * 2
g = 2 * (y * z - x * w)
i = 2 * (x * z - y * w)
j = 2 * (y * z + x * w)
k = 1 - (x ** 2 + y ** 2) * 2
# a, b, c, -
# e, f, g, -
# i, j, k, -
# -, -, -, -
return Mat3((a, b, c, e, f, g, i, j, k))
@property
def w(self) -> float:
return self[0]
@property
def x(self) -> float:
return self[1]
@property
def y(self) -> float:
return self[2]
@property
def z(self) -> float:
return self[3]
def conjugate(self) -> Quaternion:
return Quaternion(self.w, -self.x, -self.y, -self.z)
@property
def mag(self) -> float:
return self.__abs__()
def normalize(self) -> Quaternion:
m = self.__abs__()
if m == 0:
return self
return Quaternion(self[0] / m, self[1] / m, self[2] / m, self[3] / m)
def __abs__(self) -> float:
return _math.sqrt(self.w ** 2 + self.x ** 2 + self.y ** 2 + self.z ** 2)
def __invert__(self) -> Quaternion:
raise NotImplementedError("Not yet implemented")
def __repr__(self) -> str:
return f"{self.__class__.__name__}(w={self[0]}, x={self[1]}, y={self[2]}, z={self[3]})"