Difficult-Rocket/pyglet/input/base.py
2021-05-24 22:28:11 +08:00

748 lines
26 KiB
Python

# ----------------------------------------------------------------------------
# pyglet
# Copyright (c) 2006-2008 Alex Holkner
# Copyright (c) 2008-2021 pyglet contributors
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# * Neither the name of pyglet nor the names of its
# contributors may be used to endorse or promote products
# derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ----------------------------------------------------------------------------
"""Interface classes for `pyglet.input`.
.. versionadded:: 1.2
"""
import sys
from pyglet.event import EventDispatcher
_is_pyglet_doc_run = hasattr(sys, "is_pyglet_doc_run") and sys.is_pyglet_doc_run
class DeviceException(Exception):
pass
class DeviceOpenException(DeviceException):
pass
class DeviceExclusiveException(DeviceException):
pass
class Device:
"""Input device.
:Ivariables:
display : `pyglet.canvas.Display`
Display this device is connected to.
name : str
Name of the device, as described by the device firmware.
manufacturer : str
Name of the device manufacturer, or ``None`` if the information is
not available.
"""
def __init__(self, display, name):
self.display = display
self.name = name
self.manufacturer = None
# TODO: make private
self.is_open = False
def open(self, window=None, exclusive=False):
"""Open the device to begin receiving input from it.
:Parameters:
`window` : Window
Optional window to associate with the device. The behaviour
of this parameter is device and operating system dependant.
It can usually be omitted for most devices.
`exclusive` : bool
If ``True`` the device will be opened exclusively so that no
other application can use it. The method will raise
`DeviceExclusiveException` if the device cannot be opened this
way (for example, because another application has already
opened it).
"""
if self.is_open:
raise DeviceOpenException('Device is already open.')
self.is_open = True
def close(self):
"""Close the device. """
self.is_open = False
def get_controls(self):
"""Get a list of controls provided by the device.
:rtype: list of `Control`
"""
raise NotImplementedError('abstract')
def __repr__(self):
return '%s(name=%s)' % (self.__class__.__name__, self.name)
class Control(EventDispatcher):
"""Single value input provided by a device.
A control's value can be queried when the device is open. Event handlers
can be attached to the control to be called when the value changes.
The `min` and `max` properties are provided as advertised by the
device; in some cases the control's value will be outside this range.
:Ivariables:
`name` : str
Name of the control, or ``None`` if unknown
`raw_name` : str
Unmodified name of the control, as presented by the operating
system; or ``None`` if unknown.
`inverted` : bool
If ``True``, the value reported is actually inverted from what the
device reported; usually this is to provide consistency across
operating systems.
"""
def __init__(self, name, raw_name=None):
self.name = name
self.raw_name = raw_name
self.inverted = False
self._value = None
@property
def value(self):
"""Current value of the control.
The range of the value is device-dependent; for absolute controls
the range is given by ``min`` and ``max`` (however the value may exceed
this range); for relative controls the range is undefined.
:type: float
"""
return self._value
@value.setter
def value(self, newvalue):
if newvalue == self._value:
return
self._value = newvalue
self.dispatch_event('on_change', newvalue)
def __repr__(self):
if self.name:
return '%s(name=%s, raw_name=%s)' % (
self.__class__.__name__, self.name, self.raw_name)
else:
return '%s(raw_name=%s)' % (self.__class__.__name__, self.raw_name)
if _is_pyglet_doc_run:
def on_change(self, value):
"""The value changed.
:Parameters:
`value` : float
Current value of the control.
:event:
"""
Control.register_event_type('on_change')
class RelativeAxis(Control):
"""An axis whose value represents a relative change from the previous
value.
"""
#: Name of the horizontal axis control
X = 'x'
#: Name of the vertical axis control
Y = 'y'
#: Name of the Z axis control.
Z = 'z'
#: Name of the rotational-X axis control
RX = 'rx'
#: Name of the rotational-Y axis control
RY = 'ry'
#: Name of the rotational-Z axis control
RZ = 'rz'
#: Name of the scroll wheel control
WHEEL = 'wheel'
@property
def value(self):
return self._value
@value.setter
def value(self, newvalue):
self._value = newvalue
self.dispatch_event('on_change', newvalue)
class AbsoluteAxis(Control):
"""An axis whose value represents a physical measurement from the device.
The value is advertised to range over ``min`` and ``max``.
:Ivariables:
`min` : float
Minimum advertised value.
`max` : float
Maximum advertised value.
"""
#: Name of the horizontal axis control
X = 'x'
#: Name of the vertical axis control
Y = 'y'
#: Name of the Z axis control.
Z = 'z'
#: Name of the rotational-X axis control
RX = 'rx'
#: Name of the rotational-Y axis control
RY = 'ry'
#: Name of the rotational-Z axis control
RZ = 'rz'
#: Name of the hat (POV) control, when a single control enumerates all of
#: the hat's positions.
HAT = 'hat'
#: Name of the hat's (POV's) horizontal control, when the hat position is
#: described by two orthogonal controls.
HAT_X = 'hat_x'
#: Name of the hat's (POV's) vertical control, when the hat position is
#: described by two orthogonal controls.
HAT_Y = 'hat_y'
def __init__(self, name, min, max, raw_name=None):
super(AbsoluteAxis, self).__init__(name, raw_name)
self.min = min
self.max = max
class Button(Control):
"""A control whose value is boolean. """
@property
def value(self):
return bool(self._value)
@value.setter
def value(self, newvalue):
if newvalue == self._value:
return
self._value = newvalue
self.dispatch_event('on_change', bool(newvalue))
if newvalue:
self.dispatch_event('on_press')
else:
self.dispatch_event('on_release')
if _is_pyglet_doc_run:
def on_press(self):
"""The button was pressed.
:event:
"""
def on_release(self):
"""The button was released.
:event:
"""
Button.register_event_type('on_press')
Button.register_event_type('on_release')
class Joystick(EventDispatcher):
"""High-level interface for joystick-like devices. This includes analogue
and digital joysticks, gamepads, game controllers, and possibly even
steering wheels and other input devices. There is unfortunately no way to
distinguish between these different device types.
To use a joystick, first call `open`, then in your game loop examine
the values of `x`, `y`, and so on. These values are normalized to the
range [-1.0, 1.0].
To receive events when the value of an axis changes, attach an
on_joyaxis_motion event handler to the joystick. The :py:class:`~pyglet.input.Joystick` instance,
axis name, and current value are passed as parameters to this event.
To handle button events, you should attach on_joybutton_press and
on_joy_button_release event handlers to the joystick. Both the :py:class:`~pyglet.input.Joystick`
instance and the index of the changed button are passed as parameters to
these events.
Alternately, you may attach event handlers to each individual button in
`button_controls` to receive on_press or on_release events.
To use the hat switch, attach an on_joyhat_motion event handler to the
joystick. The handler will be called with both the hat_x and hat_y values
whenever the value of the hat switch changes.
The device name can be queried to get the name of the joystick.
:Ivariables:
`device` : `Device`
The underlying device used by this joystick interface.
`x` : float
Current X (horizontal) value ranging from -1.0 (left) to 1.0
(right).
`y` : float
Current y (vertical) value ranging from -1.0 (top) to 1.0
(bottom).
`z` : float
Current Z value ranging from -1.0 to 1.0. On joysticks the Z
value is usually the throttle control. On game controllers the Z
value is usually the secondary thumb vertical axis.
`rx` : float
Current rotational X value ranging from -1.0 to 1.0.
`ry` : float
Current rotational Y value ranging from -1.0 to 1.0.
`rz` : float
Current rotational Z value ranging from -1.0 to 1.0. On joysticks
the RZ value is usually the twist of the stick. On game
controllers the RZ value is usually the secondary thumb horizontal
axis.
`hat_x` : int
Current hat (POV) horizontal position; one of -1 (left), 0
(centered) or 1 (right).
`hat_y` : int
Current hat (POV) vertical position; one of -1 (bottom), 0
(centered) or 1 (top).
`buttons` : list of bool
List of boolean values representing current states of the buttons.
These are in order, so that button 1 has value at ``buttons[0]``,
and so on.
`x_control` : `AbsoluteAxis`
Underlying control for `x` value, or ``None`` if not available.
`y_control` : `AbsoluteAxis`
Underlying control for `y` value, or ``None`` if not available.
`z_control` : `AbsoluteAxis`
Underlying control for `z` value, or ``None`` if not available.
`rx_control` : `AbsoluteAxis`
Underlying control for `rx` value, or ``None`` if not available.
`ry_control` : `AbsoluteAxis`
Underlying control for `ry` value, or ``None`` if not available.
`rz_control` : `AbsoluteAxis`
Underlying control for `rz` value, or ``None`` if not available.
`hat_x_control` : `AbsoluteAxis`
Underlying control for `hat_x` value, or ``None`` if not available.
`hat_y_control` : `AbsoluteAxis`
Underlying control for `hat_y` value, or ``None`` if not available.
`button_controls` : list of `Button`
Underlying controls for `buttons` values.
"""
def __init__(self, device):
self.device = device
self.x = 0
self.y = 0
self.z = 0
self.rx = 0
self.ry = 0
self.rz = 0
self.hat_x = 0
self.hat_y = 0
self.buttons = []
self.x_control = None
self.y_control = None
self.z_control = None
self.rx_control = None
self.ry_control = None
self.rz_control = None
self.hat_x_control = None
self.hat_y_control = None
self.button_controls = []
def add_axis(control):
name = control.name
scale = 2.0 / (control.max - control.min)
bias = -1.0 - control.min * scale
if control.inverted:
scale = -scale
bias = -bias
setattr(self, name + '_control', control)
@control.event
def on_change(value):
normalized_value = value * scale + bias
setattr(self, name, normalized_value)
self.dispatch_event('on_joyaxis_motion', self, name, normalized_value)
def add_button(control):
i = len(self.buttons)
self.buttons.append(False)
self.button_controls.append(control)
@control.event
def on_change(value):
self.buttons[i] = value
@control.event
def on_press():
self.dispatch_event('on_joybutton_press', self, i)
@control.event
def on_release():
self.dispatch_event('on_joybutton_release', self, i)
def add_hat(control):
# 8-directional hat encoded as a single control (Windows/Mac)
self.hat_x_control = control
self.hat_y_control = control
@control.event
def on_change(value):
if value & 0xffff == 0xffff:
self.hat_x = self.hat_y = 0
else:
if control.max > 8: # DirectInput: scale value
value //= 0xfff
if 0 <= value < 8:
self.hat_x, self.hat_y = (( 0, 1),
( 1, 1),
( 1, 0),
( 1, -1),
( 0, -1),
(-1, -1),
(-1, 0),
(-1, 1))[value]
else:
# Out of range
self.hat_x = self.hat_y = 0
self.dispatch_event('on_joyhat_motion', self, self.hat_x, self.hat_y)
for control in device.get_controls():
if isinstance(control, AbsoluteAxis):
if control.name in ('x', 'y', 'z', 'rx', 'ry', 'rz', 'hat_x', 'hat_y'):
add_axis(control)
elif control.name == 'hat':
add_hat(control)
elif isinstance(control, Button):
add_button(control)
def open(self, window=None, exclusive=False):
"""Open the joystick device. See `Device.open`. """
self.device.open(window, exclusive)
def close(self):
"""Close the joystick device. See `Device.close`. """
self.device.close()
def on_joyaxis_motion(self, joystick, axis, value):
"""The value of a joystick axis changed.
:Parameters:
`joystick` : `Joystick`
The joystick device whose axis changed.
`axis` : string
The name of the axis that changed.
`value` : float
The current value of the axis, normalized to [-1, 1].
"""
def on_joybutton_press(self, joystick, button):
"""A button on the joystick was pressed.
:Parameters:
`joystick` : `Joystick`
The joystick device whose button was pressed.
`button` : int
The index (in `button_controls`) of the button that was pressed.
"""
def on_joybutton_release(self, joystick, button):
"""A button on the joystick was released.
:Parameters:
`joystick` : `Joystick`
The joystick device whose button was released.
`button` : int
The index (in `button_controls`) of the button that was released.
"""
def on_joyhat_motion(self, joystick, hat_x, hat_y):
"""The value of the joystick hat switch changed.
:Parameters:
`joystick` : `Joystick`
The joystick device whose hat control changed.
`hat_x` : int
Current hat (POV) horizontal position; one of -1 (left), 0
(centered) or 1 (right).
`hat_y` : int
Current hat (POV) vertical position; one of -1 (bottom), 0
(centered) or 1 (top).
"""
Joystick.register_event_type('on_joyaxis_motion')
Joystick.register_event_type('on_joybutton_press')
Joystick.register_event_type('on_joybutton_release')
Joystick.register_event_type('on_joyhat_motion')
class AppleRemote(EventDispatcher):
"""High-level interface for Apple remote control.
This interface provides access to the 6 button controls on the remote.
Pressing and holding certain buttons on the remote is interpreted as
a separate control.
:Ivariables:
`device` : `Device`
The underlying device used by this interface.
`left_control` : `Button`
Button control for the left (prev) button.
`left_hold_control` : `Button`
Button control for holding the left button (rewind).
`right_control` : `Button`
Button control for the right (next) button.
`right_hold_control` : `Button`
Button control for holding the right button (fast forward).
`up_control` : `Button`
Button control for the up (volume increase) button.
`down_control` : `Button`
Button control for the down (volume decrease) button.
`select_control` : `Button`
Button control for the select (play/pause) button.
`select_hold_control` : `Button`
Button control for holding the select button.
`menu_control` : `Button`
Button control for the menu button.
`menu_hold_control` : `Button`
Button control for holding the menu button.
"""
def __init__(self, device):
def add_button(control):
setattr(self, control.name + '_control', control)
@control.event
def on_press():
self.dispatch_event('on_button_press', control.name)
@control.event
def on_release():
self.dispatch_event('on_button_release', control.name)
self.device = device
for control in device.get_controls():
if control.name in ('left', 'left_hold', 'right', 'right_hold', 'up', 'down',
'menu', 'select', 'menu_hold', 'select_hold'):
add_button(control)
def open(self, window=None, exclusive=False):
"""Open the device. See `Device.open`. """
self.device.open(window, exclusive)
def close(self):
"""Close the device. See `Device.close`. """
self.device.close()
def on_button_press(self, button):
"""A button on the remote was pressed.
Only the 'up' and 'down' buttons will generate an event when the
button is first pressed. All other buttons on the remote will wait
until the button is released and then send both the press and release
events at the same time.
:Parameters:
`button` : unicode
The name of the button that was pressed. The valid names are
'up', 'down', 'left', 'right', 'left_hold', 'right_hold',
'menu', 'menu_hold', 'select', and 'select_hold'
:event:
"""
def on_button_release(self, button):
"""A button on the remote was released.
The 'select_hold' and 'menu_hold' button release events are sent
immediately after the corresponding press events regardless of
whether or not the user has released the button.
:Parameters:
`button` : unicode
The name of the button that was released. The valid names are
'up', 'down', 'left', 'right', 'left_hold', 'right_hold',
'menu', 'menu_hold', 'select', and 'select_hold'
:event:
"""
AppleRemote.register_event_type('on_button_press')
AppleRemote.register_event_type('on_button_release')
class Tablet:
"""High-level interface to tablet devices.
Unlike other devices, tablets must be opened for a specific window,
and cannot be opened exclusively. The `open` method returns a
`TabletCanvas` object, which supports the events provided by the tablet.
Currently only one tablet device can be used, though it can be opened on
multiple windows. If more than one tablet is connected, the behaviour is
undefined.
"""
def open(self, window):
"""Open a tablet device for a window.
:Parameters:
`window` : `Window`
The window on which the tablet will be used.
:rtype: `TabletCanvas`
"""
raise NotImplementedError('abstract')
class TabletCanvas(EventDispatcher):
"""Event dispatcher for tablets.
Use `Tablet.open` to obtain this object for a particular tablet device and
window. Events may be generated even if the tablet stylus is outside of
the window; this is operating-system dependent.
The events each provide the `TabletCursor` that was used to generate the
event; for example, to distinguish between a stylus and an eraser. Only
one cursor can be used at a time, otherwise the results are undefined.
:Ivariables:
`window` : Window
The window on which this tablet was opened.
"""
# OS X: Active window receives tablet events only when cursor is in window
# Windows: Active window receives all tablet events
#
# Note that this means enter/leave pairs are not always consistent (normal
# usage).
def __init__(self, window):
self.window = window
def close(self):
"""Close the tablet device for this window.
"""
raise NotImplementedError('abstract')
if _is_pyglet_doc_run:
def on_enter(self, cursor):
"""A cursor entered the proximity of the window. The cursor may
be hovering above the tablet surface, but outside of the window
bounds, or it may have entered the window bounds.
Note that you cannot rely on `on_enter` and `on_leave` events to
be generated in pairs; some events may be lost if the cursor was
out of the window bounds at the time.
:Parameters:
`cursor` : `TabletCursor`
The cursor that entered proximity.
:event:
"""
def on_leave(self, cursor):
"""A cursor left the proximity of the window. The cursor may have
moved too high above the tablet surface to be detected, or it may
have left the bounds of the window.
Note that you cannot rely on `on_enter` and `on_leave` events to
be generated in pairs; some events may be lost if the cursor was
out of the window bounds at the time.
:Parameters:
`cursor` : `TabletCursor`
The cursor that left proximity.
:event:
"""
def on_motion(self, cursor, x, y, pressure):
"""The cursor moved on the tablet surface.
If `pressure` is 0, then the cursor is actually hovering above the
tablet surface, not in contact.
:Parameters:
`cursor` : `TabletCursor`
The cursor that moved.
`x` : int
The X position of the cursor, in window coordinates.
`y` : int
The Y position of the cursor, in window coordinates.
`pressure` : float
The pressure applied to the cursor, in range 0.0 (no
pressure) to 1.0 (full pressure).
`tilt_x` : float
Currently undefined.
`tilt_y` : float
Currently undefined.
:event:
"""
TabletCanvas.register_event_type('on_enter')
TabletCanvas.register_event_type('on_leave')
TabletCanvas.register_event_type('on_motion')
class TabletCursor:
"""A distinct cursor used on a tablet.
Most tablets support at least a *stylus* and an *erasor* cursor; this
object is used to distinguish them when tablet events are generated.
:Ivariables:
`name` : str
Name of the cursor.
"""
# TODO well-defined names for stylus and eraser.
def __init__(self, name):
self.name = name
def __repr__(self):
return '%s(%s)' % (self.__class__.__name__, self.name)